При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Физической величиной является:

1) секунда

2) килограмм

3) линейка

4) плавление

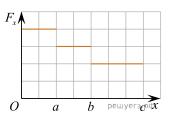
5) скорость

2. В момент времени $t_0 = 0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1 = -17t + 1.1t^2$ и $x_2 = 23t - 1.4t^2$ (x_1, x_2 — в метрах, t — в секундах), то тела встретятся через промежуток времени Δt , равный:

1) 10 c

2) 11 c

3) 12 c


3. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=38$ км/ч, второй — $<v_2>=50$ км/ч, третий — $<v_3>=53$ км/ч, то всю трассу велосипедист проехал со средней скоростью <υ> пути, равной:

1) 44 км/ч

2) 45 km/q

3) 46 км/ч

4. Тело двигалось вдоль оси Ox под действием силы \vec{F} . График зависимости проекции силы F_x на ось Ox от координаты x тела представлен на рисунке. На участках (O; a), (a; b), (b; c) сила совершила работу A_{0a} , A_{ab} , A_{hc} соответственно. Для этих работ справедливо соотношение:

1) $A_{0a} = A_{ab} < A_{bc}$ 2) $A_{0a} < A_{bc} < A_{ab}$ 3) $A_{ab} = A_{bc} < A_{0a}$ 4) $A_{ab} < A_{bc} < A_{0a}$

5. К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{d} этого тела обозначено цифрой:

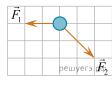


Рис. 1

Рис. 2

1) 1

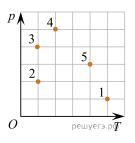
3)3

4) 4 5) 5

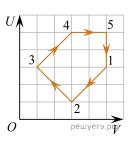
6. Шар объемом V = 15,0 дм³, имеющий внутреннюю полость объёмом $V_0 = 14,0 \text{ дм}^3$, плавает в воде $\rho_1 = 1,0 \cdot 10^3 \text{ кг/м}^3$, погрузившись в нее ровно наполовину. Если массой воздуха в полости шара пренебречь, то плотность ρ_2 вещества, из которого изготовлен шар, равна:

2) 2

 Π римечание. Объём V шара равен сумме объёма полости V_0 и объёма вещества, из которого изготовлен шар.


1) $2.5 \cdot 10^3 \text{ kg/m}^3$ 2) $4.0 \cdot 10^3 \text{ kg/m}^3$ 3) $5.5 \cdot 10^3 \text{ kg/m}^3$ 4) $7.5 \cdot 10^3 \text{ kg/m}^3$ 5) $8.5 \cdot 10^3 \text{ kg/m}^3$

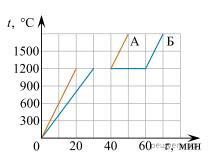
7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:


Измерение	Температура, К	Давление, кПа	Объем, л
1	280	233	10
2	320	266	10
3	340	283	10
4	360	299	10
5	380	316	10

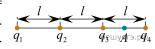
Такая закономерность характерна для процесса:

- 1) циклического
- 2) изохорного
- 3) адиабатного
- 4) изобарного
- 5) изотермического
- **8.** На *p-T* -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наибольшему давлению р газа, обозначено цифрой:

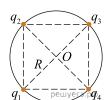
- 1) 1 2) 2 3)3 5) 5
- 9. С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$. На рисунке показана зависимость внутренней энергии U газа от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на работу, которую газ совершал:

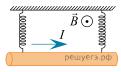

- 1) $1 \rightarrow 2$ 2) $2 \rightarrow 3$ 3) $3 \rightarrow 4$

- 10. Мощность электромобиля измеряется в:
 - 1) киловаттах
- 2) киловольтах
- 3) килоамперах
- 4) киловатт-часах
- 5) килоомах
- 11. Диаметр велосипедного колеса d = 70 см, число зубьев ведущей звездочки N_1 = 48, ведомой — N_2 = 14 (см. рис.). Если велосипедист равномерно крутит педали с частотой v = 84 об/мин, то модуль скорости V велосипеда равен ... км/ч.

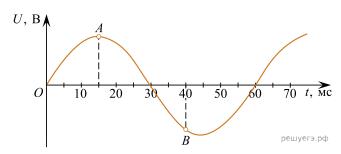


- 12. На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой m =
- 30 кг, площадь основания которого $S = 0,070 \text{ м}^2$. Если давление, оказываемое чемоданом на пол, p =3,0 кПа, то модуль ускорения a лифта равен ... $\frac{ДM}{c^2}$.
- 13. На дне вертикального цилиндрического сосуда, радиус основания которого R = 10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=201 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}$ = 1,00 г/ cm^3), равный ... cm^3 .

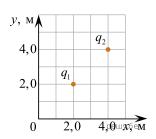

- **14.** На невесомой нерастяжимой нити длиной l=1,28 м висит небольшой шар массой M=58 г. Пуля массой m=4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с**.
- **15.** Идеальный одноатомный газ, начальный объем которого $V_1=1~{\rm m}^3$, а количество вещества остается постоянным, находится под давлением p_1 . Газ нагревают сначала изобарно до объема $V_2=3~{\rm m}^3$, а затем продолжают нагревание при постоянном объеме до давления $p_2=5\cdot 10^5$. Если количество теплоты, полученное газом при переходе из начального состояния в конечное, $Q=2,35~{\rm MДж}$, то его давление p_1 в начальном состоянии равно ... **кПа**.
- **16.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине $h_1=$ 97 м температура воды ($\rho=1,0\frac{\Gamma}{\text{CM}^3}$) $t_1=7,0^{\circ}\text{C}$, а на глубине $h_2=1,0$ м температура воды $t_2=17^{\circ}\text{C}$. Если атмосферное давление $p_0=1,0\cdot10^5$ Π a, то отношение модуля выталкивающей силы F_2 , действующей на пузырек на глубине h_2 , к модулю выталкивающей силы F_1 , действующей на пузырек на глубине h_1 , равно ...
- 17. Два образца А и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец Б имеет массу $m_{\rm B}=4,5~{\rm K}\Gamma,$ то образец А имеет массу $m_{\rm A},$ равную ... кг.


18. Четыре точечных заряда $q_1 = 5$ нКл, $q_2 = -0.9$ нКл, $q_3 = 0.5$ нКл, $q_4 = -2.0$ нКл расположены в вакууме на одной прямой (см. рис.). Если расстояние между соседними зарядами l = 60 мм, то в точке A, находящейся посередине между зарядами q_3 и q_4 , модуль напряженности E электростатического поля системы зарядов равен ... к \mathbf{B}/\mathbf{m} .

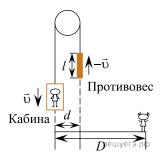
19. На окружности радиуса R=3.0 см в вершинах квадрата расположены электрические точечные заряды $q_1=5.0$ нКл, $q_2=q_3=2.0$ нКл, $q_4=-2.0$ нКл (см. рис.). Модуль напряжённости E электростатического поля, образованного всеми зарядами в центре окружности (точка O), равен ... кВ/м.



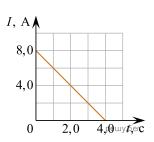
20. В однородном магнитном поле, модуль индукции которого $B=0.20~{\rm Tr}$, на двух одинаковых невесомых пружинах жёсткостью $k=100~{\rm H/m}$ подвешен в горизонтальном положении прямой однородный проводник длиной $L=1.0~{\rm m}$ (см. рис.), Линии магнитной индукции горизонтальны и перпендикулярны проводнику. Если при отсутствии тока в проводнике длина каждой пружины была x_1



= 21 см, то после того, как по проводнику пошёл ток I = 40 А, длина каждой пружины x_2 в равновесном положении стала равной ... см.


21. Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}$ = 15 мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}$ = 40 мс равно $U_{\rm B}$. Если разность напряжений $U_A-U_B=50$ В, то действующее значение напряжения $U_{\rm A}$ равно ... **В**.

- **22.** Радар, установленный на самолёте, излучил вперёд по движению в сторону неподвижного аэростата два коротких электромагнитных импульса, следующих друг за другом через промежуток времени $\tau=20\,$ мс.. Эти импульсы отразились от аэростата и были приняты радаром. Если модуль скорости, с которой самолёт приближается к аэростату, $\upsilon=210\frac{\rm M}{\rm c}$, то промежуток времени между моментами излучения и приёма первого импульса больше, чем промежуток времени между моментами излучения и приёма второго импульса, на величину Δt , равную ... нс.
- **23.** Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{B}{M}$.



24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{\text{c}}$.

28. На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью $L=1{,}03$ Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.